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The A-B-C’s of fast Z-pinches:

 currents;
er of 300 TW or
Z Machine  - Fast switching (~100 ns) of ~ 11 MJ stored energy to produce ~ 20 MA
resulting X-ray pulse of ~ 2 MJ or more, in 5 - 10 ns (FWHM), with peak radiating pow
more; temperatures of ~ 150 eV in a “ primary ” hohlraum.
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Wire arrays are the key to the radiative output:
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Why pursue EOS experiments on the Z machine?

s diagnostic
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tive drives
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Very high pressure shock waves can be generated.

There is a large amount of x-ray energy available:

• We can work with larger sample sizes, which ease
accuracy burdens

• There is the possibility of “staging” this energy crea
applications such as off-Hugoniot (isentropic) load
launching flyer plates. We do this in a simple way t
use of “ secondary ” hohlraums.

Time-resolved diagnostics applicable to EOS measuremen
have wider utility as complementary Z-pinch diagnostics.

• Of particular concern here is measurement of radia

• Have also begun to evaluate these diagnostics to d
magnetic pressures in primary hohlraums
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“Typical” EOS experiments are performed in
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We are using ALEGRA to suggest payloads and

TAN SP N
bilities is
loped by

ich must
analyze experiments for the EOS program.

ALEGRA is a 3-D multi-material finite
element-based ALE code.

One intended application is to fundamental
studies of Z-pinches and their applications:

• 3-D parallel MHD

• 3-D parallel multigroup diffusion

• Execution on ASCI hardware

The present calculations are performed using “1-D” hydro and the SPAR
rad-transport package (Morel and Hall, LANL). This combination of capa
called ASP ( ALEGRA-SPARTAN). A multigroup diffusion package deve
Budge is also now being applied.

We are working to “validate” a physics package - radiation transport - wh
become integral with the MHD at some point.
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We are exploring simple payloads for simple
PARTAN.

” the pressure pulse
yloads: Al/Be, CH/Be,
ating impedance

h.

l EOS pulse:
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development experiments using ALEGRA-S

Use Sesame EOS tables.

Opacities are calculated using an unclassified XSN
model. Typically, we use 20 groups over the range
0.1 eV to 6.0 keV for such drives.
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We predict early time motion in the absence of
ot” of

 seconds

tion

r aluminum
inal drive.
burnthrough foils, although details of the “fo
the drive may be difficult to measure.
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The nominal source is based on shot Z91 primary
hohlraum diagnostic, but the first 80 ns (below 30
eV) is simply guessed.
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Shock wave propagation for a nominal source (130
e
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We know of no unclassified wedge or step data that
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Predicted peak pressures versus depth for the
stic.
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We are most concerned with avoiding depths where attenuation is most
We also, of course, do not want to be stupid and perform a measureme
ablation region without realizing it.
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One simple way to influence the pulse is to use
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We have some confidence in the application of ASP:
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See Lindl’s review, Phys. Plasmas, 1995, Vol. 2, No. 11, 3933

We are not trying to do what this data was used for on NOVA, which 
contribute to a self-consistent prediction of the drive for a NOVA hohl
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Shots Z189 and Z190 were the first shock wave
d decent

r these experiments,
s is not an
isymmetric package. A
mple such package is
ggested below.
experiments on the Z machine that produce
VISAR data.
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The drive characterization is the greatest uncertainty
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The difference in peak drive temperatures can be
accounted for simply by the increase in volume of the
secondary hohlraum in shot Z190.
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Z189 t-x diagram and diagnostic pressures:
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Z189 calculation - experiment comparisons:
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Particle velocity non-peak error bars for
Z189A are smaller than the symbols.
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Z190 t-x diagram and diagnostic pressures:
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Z190 calculation - experiment comparisons:
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There are a lot of secondary hohlraum possibilities.
(a la M. Douglas)

Non-uniform
illumination

Preheat
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Where is this work going?

our path

e Z

 design:

 run-in

 run-in

tropic
First , start using the multi-group diffusion package (this is 
to 3-D, massively parallel rad-hydro).

Second , get the VISAR diagnostic working effectively in th
environment.

Third , apply a more rational basis for secondary hohlraum

- 3-D view factor plus simple energy/flux balance

- LASNEX (?) for 2-D approximate hole closure calculations

- Would like to do 3-D hole closure calculations

- Worried about non-uniform illumination and the low-temperature

Fourth , start gathering and using data:

- Obvious EOS interest (Beryllium - July or August)

- Data for rad-hydro validation appropriate for Z machine work

- Possibility of using VISAR data to diagnose the low temperature

Fifth , start thinking about “complex” pulse shaping for isen
loading and launching flyer plates. (Jeff Lawrence)
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